CLINICAL COMMUNICATION TO THE EDITOR

Gabapentin in the Treatment of Intractable Idiopathic Chronic Cough: Case Reports

To the Editor:

Cough remains the most common reason for seeking medical care in America. Intractable cough resolved when one patient was placed on gabapentin for migraine headaches. Our subsequent experience with this treatment is reported.

Patients were approached using Irwin and colleagues’ “anatomic diagnostic” approach to cough.\(^1,2\) Recent recognition of eosinophilic bronchitis, eosinophilic tracheobronchitis, and esophageal dysmotility was taken into consideration. Gabapentin was approved for use in 1993 as adjunctive therapy for partial seizures.\(^3\) Currently, it is estimated that gabapentin is prescribed for off-label uses in 80% of cases.\(^3\)

Case A is a 33-year-old woman with a history of celiac disease, hyperthyroidism, and porphyria. She was diagnosed with idiopathic chronic cough. In June 2003, the patient started taking gabapentin for migraine headaches; this coincided with complete resolution of cough with no recurrence to date. She remains on gabapentin.

Given the limited therapeutic options in patients with severe idiopathic chronic cough, it was believed reasonable to try gabapentin because it is well tolerated, has a wide margin of safety, and has no significant drug interactions.\(^3,4\)

Known side effects were explained to patients who had a diagnosis of severely symptomatic idiopathic chronic cough and patients willing to accept the risks participated.\(^5\) Gabapentin was given to 6 patients with idiopathic intractable chronic cough beginning at 100 mg twice per day and titrated until either improvement was manifest or a 1600-mg daily dose was reached. Response was assessed clinically by the attending physician. There was no formal cough-response instrument applied. After 1 year, the results in all patients who had been placed on gabapentin were analyzed.

Clinical details for all patients are summarized in Table 1.

Overall, the treatment was successful in 5 of 6 patients, with either complete resolution or substantial improvement in cough. The duration of improvement ranged from 6 months to ongoing. One patient relapsed on therapy and gained control by an increase in dose.

Although gabapentin was designed as a GABA-mimetic agent capable of crossing the blood–brain barrier, the effects of gabapentin in epilepsy do not seem to be mediated through interaction with GABA receptors and the exact mechanism of action remains controversial.\(^4\) There is no explanation for its effect on chronic cough.

It is not surprising that there is variability in the response to gabapentin, because it is probable that there are many different causes for “idiopathic” chronic cough.

Each patient was screened for side effects mentioned in controlled and uncontrolled studies of gabapentin for neuropathic pain, and few side effects noted in Table 1 occurred.\(^6\) One patient discontinued gabapentin temporarily because of fatigue. Another patient had transient drowsiness that resolved after 1 week. This parallels the experience in gabapentin treatment for epilepsy and neuropathic pain in which side effects commonly resolved within 2 weeks of initiating therapy and approximately 10.5% of patients quit controlled studies of gabapentin because of side effects.\(^5,6\)

There is evidence that chronic cough is more common in women and that women are more likely to seek medical attention for cough than men because they are more adversely affected by cough.\(^6\) Of note, all of the patients seen for intractable cough in this report were women and nonsmokers.

It is important to follow systematic practice when dealing with chronic cough.\(^2,7\) Nevertheless, there will be a few patients in whom chronic cough persists. It is the opinion of some clinicians that there are “currently no effective treatments for controlling the cough response with an acceptable therapeutic ratio.”\(^8\) This report suggests that gabapentin may have a role in idiopathic chronic cough. Larger, placebo-controlled studies are necessary to elucidate this potential.

Sheldon Mintz, MD
Sunnybrook and Women’s College Hospital
University of Toronto
Toronto, ON, Canada

Jason K. Lee, MD
University of British Columbia
Vancouver, BC, Canada

<table>
<thead>
<tr>
<th>Case/age/sex</th>
<th>Comorbidities</th>
<th>Medications at Initial Evaluation</th>
<th>Cough duration (mo)</th>
<th>Bronchoscopy</th>
<th>Serology or Other Investigations</th>
<th>Upper GI Series</th>
<th>*PND Workup by ENT</th>
<th>Therapeutic Trials</th>
<th>Dose of Gabapentin/Result of Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/34 y/female</td>
<td>Celiac disease, porphyria</td>
<td>Hydrochlorothiazide, Salbutamol PRN</td>
<td>18</td>
<td>Normal: negative for TB, fungus, routine cultures, and malignancy</td>
<td>Bordetella pertussis IgG EIA, reactive B. pertussis IGA EIA, nonreactive</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1. Formoterol × 5 wk 2. Advair × 3 wk 3. Budesonide × 8 wk 4. Prednisone × 2.5 wk 5. Omeprazole 1 mo</td>
</tr>
<tr>
<td>B/64 y/female</td>
<td>Chronic cystitis</td>
<td>Estrogen, Progesterone, Amitriptyline, Alendronate</td>
<td>180</td>
<td>Normal bronchial biopsy: no eosinophils. BAL: no malignancy, no eosinophils</td>
<td>ANA negative; immunoglobulin levels N; negative for acid-fast bacilli</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>1. Omeprazole 2. Prednisone × 1 wk 3. Cholestyramine resin 4. Azithromycin</td>
</tr>
<tr>
<td>C/53 y/female</td>
<td>Hypertension, dyslipidemia, hypothyroidism, osteoarthritis</td>
<td>Atorvastatin, Estrogen, Eltroxin, Trazodone, Tussionex, Hydrochlorothiazide</td>
<td>192</td>
<td>0</td>
<td>B. pertussis IgG EIA, reactive B. pertussis IgA, nonreactive</td>
<td>Mild GERD + small sliding reducible hiatus hernia</td>
<td>0</td>
<td>N</td>
<td>1. Esomeprazole 2. Prednisone × 1 wk</td>
</tr>
<tr>
<td>D/53 y/female</td>
<td>Nasal allergies</td>
<td>Venlafaxine, Esomeprazole</td>
<td>48</td>
<td>0</td>
<td>Immunoglobulins, α1-antitrypsin, sweat chloride, and esophageal motility all normal</td>
<td></td>
<td>N</td>
<td>N</td>
<td>1. Fluticasone × 3 2. wkNasonex × 3 wk</td>
</tr>
</tbody>
</table>
References


PNL = postnasal drip; MCT = methacholine challenge test; N = no abnormality found, 0 = not performed; Ig = immunoglobulin; PO = by mouth; bid = twice per day; tid = three times per day; GI = gastrointestinal; ENT = ear, nose, and throat; PRN = as needed; TB = tuberculosis; ANA = antinuclear antibody; BAL = bronchoalveolar lavage; GERD, gastroesophageal reflux disease; BAL = bronchoalveolar lavage.